38 research outputs found

    Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer

    Full text link
    Quantitative extraction of high-dimensional mineable data from medical images is a process known as radiomics. Radiomics is foreseen as an essential prognostic tool for cancer risk assessment and the quantification of intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and distant metastases (DM) in head-and-neck cancer. Prediction models combining radiomic and clinical variables were constructed via random forests and imbalance-adjustment strategies using two of the four cohorts. Independent validation of the prediction and prognostic performance of the models was carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics for assessing the risk of specific tumour outcomes using multiple stratification groups. This could have important clinical impact, notably by allowing for a better personalization of chemo-radiation treatments for head-and-neck cancer patients from different risk groups.Comment: (1) Paper: 33 pages, 4 figures, 1 table; (2) SUPP info: 41 pages, 7 figures, 8 table

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr BĂ€rnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a CiĂȘncia e Tecnologia, IP under the Norma TransitĂłria grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de InvestigaciĂłn, which is supported by Panama’s SecretarĂ­a Nacional de Ciencia, TecnologĂ­a e InnovaciĂłn. Dr Loureiro was supported by national funds through Fundação para a CiĂȘncia e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de NĂ­vel Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Combining dense elements with attention mechanisms for 3D radiotherapy dose prediction on head and neck cancers

    No full text
    PURPOSE: External radiation therapy planning is a highly complex and tedious process as it involves treating large target volumes, prescribing several levels of doses, as well as avoiding irradiating critical structures such as organs at risk close to the tumor target. This requires highly trained dosimetrists and physicists to generate a personalized plan and adapt it as treatment evolves, thus affecting the overall tumor control and patient outcomes. Our aim is to achieve accurate dose predictions for head and neck (H&N) cancer patients on a challenging in‐house dataset that reflects realistic variability and to further compare and validate the method on a public dataset. METHODS: We propose a three‐dimensional (3D) deep neural network that combines a hierarchically dense architecture with an attention U‐net (HDA U‐net). We investigate a domain knowledge objective, incorporating a weighted mean squared error (MSE) with a dose‐volume histogram (DVH) loss function. The proposed HDA U‐net using the MSE‐DVH loss function is compared with two state‐of‐the‐art U‐net variants on two radiotherapy datasets of H&N cases. These include reference dose plans, computed tomography (CT) information, organs at risk (OARs), and planning target volume (PTV) delineations. All models were evaluated using coverage, homogeneity, and conformity metrics as well as mean dose error and DVH curves. RESULTS: Overall, the proposed architecture outperformed the comparative state‐of‐the‐art methods, reaching 0.95 (0.98) on D95 coverage, 1.06 (1.07) on the maximum dose value, 0.10 (0.08) on homogeneity, 0.53 (0.79) on conformity index, and attaining the lowest mean dose error on PTVs of 1.7% (1.4%) for the in‐house (public) dataset. The improvements are statistically significant ([Formula: see text]) for the homogeneity and maximum dose value compared with the closest baseline. All models offer a near real‐time prediction, measured between 0.43 and 0.88 s per volume. CONCLUSION: The proposed method achieved similar performance on both realistic in‐house data and public data compared to the attention U‐net with a DVH loss, and outperformed other methods such as HD U‐net and HDA U‐net with standard MSE losses. The use of the DVH objective for training showed consistent improvements to the baselines on most metrics, supporting its added benefit in H&N cancer cases. The quick prediction time of the proposed method allows for real‐time applications, providing physicians a method to generate an objective end goal for the dosimetrist to use as reference for planning. This could considerably reduce the number of iterations between the two expert physicians thus reducing the overall treatment planning time

    Magnetic Resonance-Guided Radiation Therapy for Head and Neck Cancers

    No full text
    Despite the significant evolution of radiation therapy (RT) techniques in recent years, many patients with head and neck cancer still experience significant toxicities during and after treatments. The increased soft tissue contrast and functional sequences of magnetic resonance imaging (MRI) are particularly attractive in head and neck cancer and have led to the increasing development of magnetic resonance-guided RT (MRgRT). This approach refers to the inclusion of the additional information acquired from a diagnostic or planning MRI in radiation treatment planning, and now extends to online high-quality daily imaging generated by the recently developed MR-Linac. MRgRT holds numerous potentials, including enhanced baseline and planning evaluations, anatomical and functional treatment adaptation, potential for hypofractionation, and multiparametric assessment of response. This article offers a structured review of the current literature on these established and upcoming roles of MRI for patients with head and neck cancer undergoing RT

    Cross-institutional outcome prediction for head and neck cancer patients using self-attention neural networks

    No full text
    In radiation oncology, predicting patient risk stratification allows specialization of therapy intensification as well as selecting between systemic and regional treatments, all of which helps to improve patient outcome and quality of life. Deep learning offers an advantage over traditional radiomics for medical image processing by learning salient features from training data originating from multiple datasets. However, while their large capacity allows to combine high-level medical imaging data for outcome prediction, they lack generalization to be used across institutions. In this work, a pseudo-volumetric convolutional neural network with a deep preprocessor module and self-attention (PreSANet) is proposed for the prediction of distant metastasis, locoregional recurrence, and overall survival occurrence probabilities within the 10 year follow-up time frame for head and neck cancer patients with squamous cell carcinoma. The model is capable of processing multi-modal inputs of variable scan length, as well as integrating patient data in the prediction model. These proposed architectural features and additional modalities all serve to extract additional information from the available data when availability to additional samples is limited. This model was trained on the public Cancer Imaging Archive Head–Neck-PET–CT dataset consisting of 298 patients undergoing curative radio/chemo-radiotherapy and acquired from 4 different institutions. The model was further validated on an internal retrospective dataset with 371 patients acquired from one of the institutions in the training dataset. An extensive set of ablation experiments were performed to test the utility of the proposed model characteristics, achieving an AUROC of [Formula: see text] , [Formula: see text] and [Formula: see text] for DM, LR and OS respectively on the public TCIA Head–Neck-PET–CT dataset. External validation was performed on a retrospective dataset with 371 patients, achieving [Formula: see text] AUROC in all outcomes. To test for model generalization across sites, a validation scheme consisting of single site-holdout and cross-validation combining both datasets was used. The mean accuracy across 4 institutions obtained was [Formula: see text] , [Formula: see text] and [Formula: see text] for DM, LR and OS respectively. The proposed model demonstrates an effective method for tumor outcome prediction for multi-site, multi-modal combining both volumetric data and structured patient clinical data

    Aetiological heterogeneity of head and neck squamous cell carcinomas: the role of human papillomavirus infections, smoking and alcohol

    No full text
    International audienceTobacco and alcohol consumption are the main risk factors for head and neck squamous cell carcinoma (HNSCC). In addition, human papillomavirus (HPV) infection plays a causal role in oropharyngeal cancer (OPC), a subset of HNSCC. We assessed the independent effects of tobacco, alcohol and HPV infection on OPC risk in the head and neck cancer (HeNCe) Life study, a hospital-based case-control study of HNSCC with frequency-matched controls by age and sex from four Montreal hospitals. Interviewers collected information on socio-demographic and behavioural factors. We tested exfoliated oral cells for HPV DNA by polymerase chain reaction (PCR). We included only OPC cases (n = 188) and controls (n = 427) without missing values for HPV, smoking or alcohol. We examined associations by estimating odds ratios (ORs) and corresponding 95% confidence intervals (CI) using unconditional logistic regression. Smoking (OR = 1.90, 95% CI: 1.04-3.45) and alcohol (OR = 2.74, 95% CI: 1.45-5.15) were associated with an increased risk of OPC independent of HPV status. Positivity for HPV 16 among heavy smokers and heavy alcohol users was associated with a 30.4-fold (95% CI: 8.94-103.26) and 18.6-fold (95% CI: 5.75-60.13) elevation in risk of OPC relative to participants who were HPV negative, respectively. Moreover, the combined effect of heavy smoking and alcohol comsumption with HPV 16 infection substantially increased OPC risk (OR = 48.76, 95% CI: 15.83-150.17) and (OR = 50.60, 95% CI: 15.96-160.40), respectively. Our results support the independent roles of smoking, alcohol and HPV infection in OPC risk and a possible combined effect. Efforts should be made to tackle these major risk factors simultaneously

    Increased risk of oropharyngeal cancers mediated by oral human papillomavirus infection: Results from a Canadian study

    No full text
    International audienceBACKGROUND: This study aimed to estimate the extent to which oral sex behavior is associated with an increased risk of oropharyngeal cancers (OPCs), and how much of the association is mediated by oral human papillomavirus (HPV) infection.METHODS: We used data from a hospital-based case-control study conducted in Montreal, Canada. Information on oral sex behaviors was collected. Oral rinse and oral brush specimens were analyzed for HPV positivity and genotyping. Logistic regression estimated the odds ratios (OR) and 95% confidence intervals (CI) for the association between oral sex behaviors and OPC.RESULTS: Onset of oral sex practice at age 16 years or younger had an increased risk of OPCs relative to those with onset after age 30 years (OR = 2.98; 95% CI 1.37-6.47). This association decreased (OR = 1.09; 95% CI 0.25-4.71) when restricted to those positive for HPV.CONCLUSIONS: Our results suggest that the association between oral sex and OPC seems mediated by oral HPV infection
    corecore